Genetics (Current Issue)

Subscribe to Genetics (Current Issue) feed Genetics (Current Issue)
Genetics RSS feed -- current issue
Updated: 15 min 47 sec ago

Cross-Species Y Chromosome Function Between Malaria Vectors of the Anopheles gambiae Species Complex [Population and Evolutionary Genetics]

October 4, 2017 - 8:16am

Y chromosome function, structure and evolution is poorly understood in many species, including the Anopheles genus of mosquitoes—an emerging model system for studying speciation that also represents the major vectors of malaria. While the Anopheline Y had previously been implicated in male mating behavior, recent data from the Anopheles gambiae complex suggests that, apart from the putative primary sex-determiner, no other genes are conserved on the Y. Studying the functional basis of the evolutionary divergence of the Y chromosome in the gambiae complex is complicated by complete F1 male hybrid sterility. Here, we used an F1 F0 crossing scheme to overcome a severe bottleneck of male hybrid incompatibilities that enabled us to experimentally purify a genetically labeled A. gambiae Y chromosome in an A. arabiensis background. Whole genome sequencing (WGS) confirmed that the A. gambiae Y retained its original sequence content in the A. arabiensis genomic background. In contrast to comparable experiments in Drosophila, we find that the presence of a heterospecific Y chromosome has no significant effect on the expression of A. arabiensis genes, and transcriptional differences can be explained almost exclusively as a direct consequence of transcripts arising from sequence elements present on the A. gambiae Y chromosome itself. We find that Y hybrids show no obvious fertility defects, and no substantial reduction in male competitiveness. Our results demonstrate that, despite their radically different structure, Y chromosomes of these two species of the gambiae complex that diverged an estimated 1.85 MYA function interchangeably, thus indicating that the Y chromosome does not harbor loci contributing to hybrid incompatibility. Therefore, Y chromosome gene flow between members of the gambiae complex is possible even at their current level of divergence. Importantly, this also suggests that malaria control interventions based on sex-distorting Y drive would be transferable, whether intentionally or contingent, between the major malaria vector species.

Categories: Genetics News Feed

Significant Synteny and Colocalization of Ecologically Relevant Quantitative Trait Loci Within and Across Species of Salmonid Fishes [Genetics of Complex Traits]

October 4, 2017 - 8:16am

The organization of functional regions within genomes has important implications for evolutionary potential. Considerable research effort has gone toward identifying the genomic basis of phenotypic traits of interest through quantitative trait loci (QTL) analyses. Less research has assessed the arrangement of QTL in the genome within and across species. To investigate the distribution, extent of colocalization, and the synteny of QTL for ecologically relevant traits, we used a comparative genomic mapping approach within and across a range of salmonid species. We compiled 943 QTL from all available species [lake whitefish (Coregonus clupeaformis), coho salmon (Oncorhynchus kisutch), rainbow trout (O. mykiss), Chinook salmon (O. tshawytscha), Atlantic salmon (Salmo salar), and Arctic charr (Salvelinus alpinus)]. We developed a novel analytical framework for mapping and testing the distribution of these QTL. We found no correlation between QTL density and gene density at the chromosome level but did at the fine-scale. Two chromosomes were significantly enriched for QTL. We found multiple synteny blocks for morphological, life history, and physiological traits across species, but only morphology and physiology had significantly more than expected. Two or three pairs of traits were significantly colocalized in three species (lake whitefish, coho salmon, and rainbow trout). Colocalization and fine-scale synteny suggest genetic linkage between traits within species and a conserved genetic basis across species. However, this pattern was weak overall, with colocalization and synteny being relatively rare. These findings advance our understanding of the role of genomic organization in the renowned ecological and phenotypic variability of salmonid fishes.

Categories: Genetics News Feed

Selection During Maize Domestication Targeted a Gene Network Controlling Plant and Inflorescence Architecture [Genetics of Complex Traits]

October 4, 2017 - 8:16am

Selection during evolution, whether natural or artificial, acts through the phenotype. For multifaceted phenotypes such as plant and inflorescence architecture, the underlying genetic architecture is comprised of a complex network of interacting genes rather than single genes that act independently to determine the trait. As such, selection acts on entire gene networks. Here, we begin to define the genetic regulatory network to which the maize domestication gene, teosinte branched1 (tb1), belongs. Using a combination of molecular methods to uncover either direct or indirect regulatory interactions, we identified a set of genes that lie downstream of tb1 in a gene network regulating both plant and inflorescence architecture. Additional genes, known from the literature, also act in this network. We observed that tb1 regulates both core cell cycle genes and another maize domestication gene, teosinte glume architecture1 (tga1). We show that several members of the MADS-box gene family are either directly or indirectly regulated by tb1 and/or tga1, and that tb1 sits atop a cascade of transcriptional regulators controlling both plant and inflorescence architecture. Multiple members of the tb1 network appear to have been the targets of selection during maize domestication. Knowledge of the regulatory hierarchies controlling traits is central to understanding how new morphologies evolve.

Categories: Genetics News Feed

Variation in Recombination Rate and Its Genetic Determinism in Sheep Populations [Genetics of Complex Traits]

October 4, 2017 - 8:16am

Recombination is a complex biological process that results from a cascade of multiple events during meiosis. Understanding the genetic determinism of recombination can help to understand if and how these events are interacting. To tackle this question, we studied the patterns of recombination in sheep, using multiple approaches and data sets. We constructed male recombination maps in a dairy breed from the south of France (the Lacaune breed) at a fine scale by combining meiotic recombination rates from a large pedigree genotyped with a 50K SNP array and historical recombination rates from a sample of unrelated individuals genotyped with a 600K SNP array. This analysis revealed recombination patterns in sheep similar to other mammals but also genome regions that have likely been affected by directional and diversifying selection. We estimated the average recombination rate of Lacaune sheep at 1.5 cM/Mb, identified ~50,000 crossover hotspots on the genome, and found a high correlation between historical and meiotic recombination rate estimates. A genome-wide association study revealed two major loci affecting interindividual variation in recombination rate in Lacaune, including the RNF212 and HEI10 genes and possibly two other loci of smaller effects including the KCNJ15 and FSHR genes. The comparison of these new results to those obtained previously in a distantly related population of domestic sheep (the Soay) revealed that Soay and Lacaune males have a very similar distribution of recombination along the genome. The two data sets were thus combined to create more precise male meiotic recombination maps in Sheep. However, despite their similar recombination maps, Soay and Lacaune males were found to exhibit different heritabilities and QTL effects for interindividual variation in genome-wide recombination rates. This highlights the robustness of recombination patterns to underlying variation in their genetic determinism.

Categories: Genetics News Feed

A Mixed Model Approach to Genome-Wide Association Studies for Selection Signatures, with Application to Mice Bred for Voluntary Exercise Behavior [Genetics of Complex Traits]

October 4, 2017 - 8:16am

Selection experiments and experimental evolution provide unique opportunities to study the genetics of adaptation because the target and intensity of selection are known relatively precisely. In contrast to natural selection, where populations are never strictly "replicated," experimental evolution routinely includes replicate lines so that selection signatures—genomic regions showing excessive differentiation between treatments—can be separated from possible founder effects, genetic drift, and multiple adaptive solutions. We developed a mouse model with four lines within a high running (HR) selection treatment and four nonselected controls (C). At generation 61, we sampled 10 mice of each line and used the Mega Mouse Universal Genotyping Array to obtain single nucleotide polymorphism (SNP) data for 25,318 SNPs for each individual. Using an advanced mixed model procedure developed in this study, we identified 152 markers that were significantly different in frequency between the two selection treatments. They occurred on all chromosomes except 1, 2, 8, 13, and 19, and showed a variety of patterns in terms of fixation (or the lack thereof) in the four HR and four C lines. Importantly, none were fixed for alternative alleles between the two selection treatments. The current state-of-the-art regularized F test applied after pooling DNA samples for each line failed to detect any markers. We conclude that when SNP or sequence data are available from individuals, the mixed model methodology is recommended for selection signature detection. As sequencing at the individual level becomes increasingly feasible, the new methodology may be routinely applied for detection of selection.

Categories: Genetics News Feed

Identification of trans Protein QTL for Secreted Airway Mucins in Mice and a Causal Role for Bpifb1 [Genetics of Complex Traits]

October 4, 2017 - 8:16am

Mucus hyper-secretion is a hallmark feature of asthma and other muco-obstructive airway diseases. The mucin proteins MUC5AC and MUC5B are the major glycoprotein components of mucus and have critical roles in airway defense. Despite the biomedical importance of these two proteins, the loci that regulate them in the context of natural genetic variation have not been studied. To identify genes that underlie variation in airway mucin levels, we performed genetic analyses in founder strains and incipient lines of the Collaborative Cross (CC) in a house dust mite mouse model of asthma. CC founder strains exhibited significant differences in MUC5AC and MUC5B, providing evidence of heritability. Analysis of gene and protein expression of Muc5ac and Muc5b in incipient CC lines (n = 154) suggested that post-transcriptional events were important regulators of mucin protein content in the airways. Quantitative trait locus (QTL) mapping identified distinct, trans protein QTL for MUC5AC (chromosome 13) and MUC5B (chromosome 2). These two QTL explained 18 and 20% of phenotypic variance, respectively. Examination of the MUC5B QTL allele effects and subsequent phylogenetic analysis allowed us to narrow the MUC5B QTL and identify Bpifb1 as a candidate gene. Bpifb1 mRNA and protein expression were upregulated in parallel to MUC5B after allergen challenge, and Bpifb1 knockout mice exhibited higher MUC5B expression. Thus, BPIFB1 is a novel regulator of MUC5B.

Categories: Genetics News Feed

Developmental Restriction of Retrotransposition Activated in Arabidopsis by Environmental Stress [Genome and Systems Biology]

October 4, 2017 - 8:16am

Retrotransposons (RTs) can rapidly increase in copy number due to periodic bursts of transposition. Such bursts are mutagenic and thus potentially deleterious. However, certain transposition-induced gain-of-function or regulatory mutations may be of selective advantage. How an optimal balance between these opposing effects arises is not well characterized. Here, we studied transposition bursts of a heat-activated retrotransposon family in Arabidopsis. We recorded a high inter and intraplant variation in the number and chromosomal position of new insertions, which usually did not affect plant fertility and were equally well transmitted through male and female gametes, even though 90% of them were within active genes. We found that a highly heterogeneous distribution of these new retroelement copies result from a combination of two mechanisms, of which the first prevents multiple transposition bursts in a given somatic cell lineage that later contributes to differentiation of gametes, and the second restricts the regulatory influence of new insertions toward neighboring chromosomal DNA. As a whole, such regulatory characteristics of this family of RTs ensure its rapid but stepwise accumulation in plant populations experiencing transposition bursts accompanied by high diversity of chromosomal sites harboring new RT insertions.

Categories: Genetics News Feed

ISSUE HIGHLIGHTS [Issue Highlights]

October 4, 2017 - 8:16am
Categories: Genetics News Feed

Emerging Properties and Functional Consequences of Noncoding Transcription [Perspectives]

October 4, 2017 - 8:16am

Eukaryotic genomes are rich in transcription units encoding "long noncoding RNAs" (lncRNAs). The purpose of all this transcription is unclear since most lncRNAs are quickly targeted for destruction during synthesis or shortly thereafter. As debates continue over the functional significance of many specific lncRNAs, support grows for the notion that the act of transcription rather than the RNA product itself is functionally important in many cases. Indeed, this alternative mechanism might better explain how low-abundance lncRNAs transcribed from noncoding DNA function in organisms. Here, we highlight some of the recently emerging features that distinguish coding from noncoding transcription and discuss how these differences might have important implications for the functional consequences of noncoding transcription.

Categories: Genetics News Feed

Do Gametes Woo? Evidence for Their Nonrandom Union at Fertilization [Review]

October 4, 2017 - 8:16am

A fundamental tenet of inheritance in sexually reproducing organisms such as humans and laboratory mice is that gametes combine randomly at fertilization, thereby ensuring a balanced and statistically predictable representation of inherited variants in each generation. This principle is encapsulated in Mendel’s First Law. But exceptions are known. With transmission ratio distortion, particular alleles are preferentially transmitted to offspring. Preferential transmission usually occurs in one sex but not both, and is not known to require interactions between gametes at fertilization. A reanalysis of our published work in mice and of data in other published reports revealed instances where any of 12 mutant genes biases fertilization, with either too many or too few heterozygotes and homozygotes, depending on the mutant gene and on dietary conditions. Although such deviations are usually attributed to embryonic lethality of the underrepresented genotypes, the evidence is more consistent with genetically-determined preferences for specific combinations of egg and sperm at fertilization that result in genotype bias without embryo loss. This unexpected discovery of genetically-biased fertilization could yield insights about the molecular and cellular interactions between sperm and egg at fertilization, with implications for our understanding of inheritance, reproduction, population genetics, and medical genetics.

Categories: Genetics News Feed

Gene Tagging Strategies To Assess Protein Expression, Localization, and Function in Drosophila [Methods]

October 4, 2017 - 8:16am

Analysis of gene function in complex organisms relies extensively on tools to detect the cellular and subcellular localization of gene products, especially proteins. Typically, immunostaining with antibodies provides these data. However, due to cost, time, and labor limitations, generating specific antibodies against all proteins of a complex organism is not feasible. Furthermore, antibodies do not enable live imaging studies of protein dynamics. Hence, tagging genes with standardized immunoepitopes or fluorescent tags that permit live imaging has become popular. Importantly, tagging genes present in large genomic clones or at their endogenous locus often reports proper expression, subcellular localization, and dynamics of the encoded protein. Moreover, these tagging approaches allow the generation of elegant protein removal strategies, standardization of visualization protocols, and permit protein interaction studies using mass spectrometry. Here, we summarize available genomic resources and techniques to tag genes and discuss relevant applications that are rarely, if at all, possible with antibodies.

Categories: Genetics News Feed

Lipid and Carbohydrate Metabolism in Caenorhabditis elegans [Metabolism, Physiology, and Aging]

October 4, 2017 - 8:16am

Lipid and carbohydrate metabolism are highly conserved processes that affect nearly all aspects of organismal biology. Caenorhabditis elegans eat bacteria, which consist of lipids, carbohydrates, and proteins that are broken down during digestion into fatty acids, simple sugars, and amino acid precursors. With these nutrients, C. elegans synthesizes a wide range of metabolites that are required for development and behavior. In this review, we outline lipid and carbohydrate structures as well as biosynthesis and breakdown pathways that have been characterized in C. elegans. We bring attention to functional studies using mutant strains that reveal physiological roles for specific lipids and carbohydrates during development, aging, and adaptation to changing environmental conditions.

Categories: Genetics News Feed

MIP-MAP: High-Throughput Mapping of Caenorhabditis elegans Temperature-Sensitive Mutants via Molecular Inversion Probes [Methods, Technology, and Resources]

October 4, 2017 - 8:16am

Mutants remain a powerful means for dissecting gene function in model organisms such as Caenorhabditis elegans. Massively parallel sequencing has simplified the detection of variants after mutagenesis but determining precisely which change is responsible for phenotypic perturbation remains a key step. Genetic mapping paradigms in C. elegans rely on bulk segregant populations produced by crosses with the problematic Hawaiian wild isolate and an excess of redundant information from whole-genome sequencing (WGS). To increase the repertoire of available mutants and to simplify identification of the causal change, we performed WGS on 173 temperature-sensitive (TS) lethal mutants and devised a novel mapping method. The mapping method uses molecular inversion probes (MIP-MAP) in a targeted sequencing approach to genetic mapping, and replaces the Hawaiian strain with a Million Mutation Project strain with high genomic and phenotypic similarity to the laboratory wild-type strain N2. We validated MIP-MAP on a subset of the TS mutants using a competitive selection approach to produce TS candidate mapping intervals with a mean size < 3 Mb. MIP-MAP successfully uses a non-Hawaiian mapping strain and multiplexed libraries are sequenced at a fraction of the cost of WGS mapping approaches. Our mapping results suggest that the collection of TS mutants contains a diverse library of TS alleles for genes essential to development and reproduction. MIP-MAP is a robust method to genetically map mutations in both viable and essential genes and should be adaptable to other organisms. It may also simplify tracking of individual genotypes within population mixtures.

Categories: Genetics News Feed

Evolutionarily Conserved Alternative Splicing Across Monocots [Methods, Technology, and Resources]

October 4, 2017 - 8:16am

One difficulty when identifying alternative splicing (AS) events in plants is distinguishing functional AS from splicing noise. One way to add confidence to the validity of a splice isoform is to observe that it is conserved across evolutionarily related species. We use a high throughput method to identify junction-based conserved AS events from RNA-Seq data across nine plant species, including five grass monocots (maize, sorghum, rice, Brachpodium, and foxtail millet), plus two nongrass monocots (banana and African oil palm), the eudicot Arabidopsis, and the basal angiosperm Amborella. In total, 9804 AS events were found to be conserved between two or more species studied. In grasses containing large regions of conserved synteny, the frequency of conserved AS events is twice that observed for genes outside of conserved synteny blocks. In plant-specific RS and RS2Z subfamilies of the serine/arginine (SR) splice-factor proteins, we observe both conservation and divergence of AS events after the whole genome duplication in maize. In addition, plant-specific RS and RS2Z splice-factor subfamilies are highly connected with R2R3-MYB in STRING functional protein association networks built using genes exhibiting conserved AS. Furthermore, we discovered that functional protein association networks constructed around genes harboring conserved AS events are enriched for phosphatases, kinases, and ubiquitylation genes, which suggests that AS may participate in regulating signaling pathways. These data lay the foundation for identifying and studying conserved AS events in the monocots, particularly across grass species, and this conserved AS resource identifies an additional layer between genotype to phenotype that may impact future crop improvement efforts.

Categories: Genetics News Feed

Dissecting Causal Pathways Using Mendelian Randomization with Summarized Genetic Data: Application to Age at Menarche and Risk of Breast Cancer [Methods, Technology, and Resources]

October 4, 2017 - 8:16am

Mendelian randomization is the use of genetic variants as instrumental variables to estimate causal effects of risk factors on outcomes. The total causal effect of a risk factor is the change in the outcome resulting from intervening on the risk factor. This total causal effect may potentially encompass multiple mediating mechanisms. For a proposed mediator, the direct effect of the risk factor is the change in the outcome resulting from a change in the risk factor, keeping the mediator constant. A difference between the total effect and the direct effect indicates that the causal pathway from the risk factor to the outcome acts at least in part via the mediator (an indirect effect). Here, we show that Mendelian randomization estimates of total and direct effects can be obtained using summarized data on genetic associations with the risk factor, mediator, and outcome, potentially from different data sources. We perform simulations to test the validity of this approach when there is unmeasured confounding and/or bidirectional effects between the risk factor and mediator. We illustrate this method using the relationship between age at menarche and risk of breast cancer, with body mass index (BMI) as a potential mediator. We show an inverse direct causal effect of age at menarche on risk of breast cancer (independent of BMI), and a positive indirect effect via BMI. In conclusion, multivariable Mendelian randomization using summarized genetic data provides a rapid and accessible analytic strategy that can be undertaken using publicly available data to better understand causal mechanisms.

Categories: Genetics News Feed

Incorporating Gene Annotation into Genomic Prediction of Complex Phenotypes [Genomic Selection]

October 4, 2017 - 8:16am

Today, genomic prediction (GP) is an established technology in plant and animal breeding programs. Current standard methods are purely based on statistical considerations but do not make use of the abundant biological knowledge, which is easily available from public databases. Major questions that have to be answered before biological prior information can be used routinely in GP approaches are which types of information can be used, and at which points they can be incorporated into prediction methods. In this study, we propose a novel strategy to incorporate gene annotation into GP of complex phenotypes by defining haploblocks according to gene positions. Haplotype effects are then modeled as categorical or as numerical allele dosage variables. The underlying concept of this approach is to build the statistical model on variables representing the biologically functional units. We evaluate the new methods with data from a heterogeneous stock mouse population, the Drosophila Genetic Reference Panel (DGRP), and a rice breeding population from the Rice Diversity Panel. Our results show that using gene annotation to define haploblocks often leads to a comparable, but for some traits to a higher, predictive ability compared to SNP-based models or to haplotype models that do not use gene annotation information. Modeling gene interaction effects can further improve predictive ability. We also illustrate that the additional use of markers that have not been mapped to any gene in a second separate relatedness matrix does in many cases not lead to a relevant additional increase in predictive ability when the first matrix is based on haploblocks defined with gene annotation data, suggesting that intergenic markers only provide redundant information on the considered data sets. Therefore, gene annotation information seems to be appropriate to perceive the importance of DNA segments. Finally, we discuss the effects of gene annotation quality, marker density, and linkage disequilibrium on the performance of the new methods. To our knowledge, this is the first work that incorporates epistatic interaction or gene annotation into haplotype-based prediction approaches.

Categories: Genetics News Feed

Multi-population Genomic Relationships for Estimating Current Genetic Variances Within and Genetic Correlations Between Populations [Genomic Selection]

October 4, 2017 - 8:16am

Different methods are available to calculate multi-population genomic relationship matrices. Since those matrices differ in base population, it is anticipated that the method used to calculate genomic relationships affects the estimate of genetic variances, covariances, and correlations. The aim of this article is to define the multi-population genomic relationship matrix to estimate current genetic variances within and genetic correlations between populations. The genomic relationship matrix containing two populations consists of four blocks, one block for population 1, one block for population 2, and two blocks for relationships between the populations. It is known, based on literature, that by using current allele frequencies to calculate genomic relationships within a population, current genetic variances are estimated. In this article, we theoretically derived the properties of the genomic relationship matrix to estimate genetic correlations between populations and validated it using simulations. When the scaling factor of across-population genomic relationships is equal to the product of the square roots of the scaling factors for within-population genomic relationships, the genetic correlation is estimated unbiasedly even though estimated genetic variances do not necessarily refer to the current population. When this property is not met, the correlation based on estimated variances should be multiplied by a correction factor based on the scaling factors. In this study, we present a genomic relationship matrix which directly estimates current genetic variances as well as genetic correlations between populations.

Categories: Genetics News Feed

The Yeast Heterochromatin Protein Sir3 Experienced Functional Changes in the AAA+ Domain After Gene Duplication and Subfunctionalization [Gene Expression]

October 4, 2017 - 8:16am

A key unresolved issue in molecular evolution is how paralogs diverge after gene duplication. For multifunctional genes, duplication is often followed by subfunctionalization. Subsequently, new or optimized molecular properties may evolve once the protein is no longer constrained to achieve multiple functions. A potential example of this process is the evolution of the yeast heterochromatin protein Sir3, which arose by duplication from the conserved DNA replication protein Orc1. We previously found that Sir3 subfunctionalized after duplication. In this study, we investigated whether Sir3 evolved new or optimized properties after subfunctionalization . This possibility is supported by our observation that nonduplicated Orc1/Sir3 proteins from three species were unable to complement a sir3 mutation in Saccharomyces cerevisiae. To identify regions of Sir3 that may have evolved new properties, we created chimeric proteins of ScSir3 and nonduplicated Orc1 from Kluyveromyces lactis. We identified the AAA+ base subdomain of KlOrc1 as insufficient for heterochromatin formation in S. cerevisiae. In Orc1, this subdomain is intimately associated with other ORC subunits, enabling ATP hydrolysis. In Sir3, this subdomain binds Sir4 and perhaps nucleosomes. Our data are inconsistent with the insufficiency of KlOrc1 resulting from its ATPase activity or an inability to bind ScSir4. Thus, once Sir3 was no longer constrained to assemble into the ORC complex, its heterochromatin-forming potential evolved through changes in the AAA+ base subdomain.

Categories: Genetics News Feed

Silencing of Repetitive DNA Is Controlled by a Member of an Unusual Caenorhabditis elegans Gene Family [Gene Expression]

October 4, 2017 - 8:16am

Repetitive DNA sequences are subject to gene silencing in various animal species. Under specific circumstances repetitive DNA sequences can escape such silencing. For example, exogenously added, extrachromosomal DNA sequences that are stably inherited in multicopy repetitive arrays in the nematode Caenorhabditis elegans are frequently silenced in the germline, whereas such silencing often does not occur in the soma. This indicates that somatic cells might utilize factors that prevent repetitive DNA silencing. Indeed, such "antisilencing" factors have been revealed through genetic screens that identified mutant loci in which repetitive transgenic arrays are aberrantly silenced in the soma. We describe here a novel locus, pals-22 (for protein containing ALS2CR12 signature), required to prevent silencing of repetitive transgenes in neurons and other somatic tissue types. pals-22 deficiency also severely impacts animal vigor and confers phenotypes reminiscent of accelerated aging. We find that pals-22 is a member of a large family of divergent genes (39 members), defined by homology to the ALS2CR12 protein family. While gene family members are highly divergent, they show striking patterns of chromosomal clustering. The family expansion appears C. elegans-specific and has not occurred to the same extent in other nematode species for which genome sequences are available. The transgene-silencing phenotype observed upon loss of PALS-22 protein depends on the biogenesis of small RNAs. We speculate that the pals gene family may be part of a species-specific cellular defense mechanism.

Categories: Genetics News Feed

Pages